We have seen a lot of discoveries, new ideas, concepts...

- Discovery of charged leptons and neutrinos (total of 6)
- Discovery of quarks... u, d,s,c,b,t (total of 6)
- We have seen that we need three interactions to describe different cross section , lifetimes...: strong, weak, electromagnetic
- We have introduced the new way of looking at the interactions as exchange of virtual particles (bosons): photons, gluons, W, Z...
- We have seen that there are quantum numbers which are conserved in certain interactions and not in others...
- In particular we have seen that Parity is not conserved in weak interaction and that the fondamental fermions are left handed (for massless particles)
- We have still to see that the forces/interactions in modern quantum field theory comes from a symmetry principle (local gauge transformation)

Discovery of W^{\pm} and of the Z^0

- CERN 1984 collisions $p\overline{p}$
 - $p\overline{p} \rightarrow W^+ X^- \qquad W^+ \rightarrow l^+ \nu_1$
 - $pp \rightarrow Z^0 X^0 \qquad Z^0 \rightarrow l^+ l^-$

 $u\overline{d} \rightarrow W^+$ $u\overline{u}, d\overline{d} \rightarrow Z^0$

• You need 80 to 90 GeV of energy to produce W and Z

continuous symmetries

Continuous symmetry : additive quantum number (conserved)

- space-time symmetry (translation, rotation)

For a unitary transformation T_{α} one can write $T_{\alpha} = \exp(-i\alpha Q)$ Q is called the transformation's generator

of generators = # of parameters in the transformation (eg : 3 generators for the rotation) The momentum operators are the generators of the translation

- internal symmetry (gauge symmetry : EM) : if global : quantum number conservation (eg baryonic one) ; if local : « appearance » of a vector field (the photon) see later...

Electric charge

• Additive quantum number

<u>Additive quantum number</u>: is a quantity which takes discrete values and the value for a system is equal to the sum of the values of the components of the system

• Analogy with translation

Symmetry operator associates to) $S(\alpha = e^{-i\alpha/\Gamma Q}$ Observable : electric charge

- electric charge If $S(\alpha)$ commute with H: conservation of electric charge
- In a reaction $\{q_i; i=1...,n\} \rightarrow \{q_f; f=1...,m\}$ on aura $\sum_{i=1}^n q_i = \sum_{f=1}^m q_f$
- Since all the physical states have a determined charge, the effect of these operators will be to multiply all the wave function by a phase factor

 $e^{-i\alpha q/h}$ q is the Electric charge of the system

Transformation of phase or global gauge transformation

Same other additive quantum numbers are (baryonics, leptonic...). Those are also called internal symmetries

.. Local gauge transformation

 $e^{-i\alpha q/h}$: global gauge transformation \rightarrow do not modify the Schrödinger eq

$$e^{-iq/h\alpha(\vec{x},t)}$$
: local gauge transformation if $\psi(\vec{x},t)$ satisfy Schrödinger eq
 $\psi'(\vec{x},t) = e^{-iq/h\alpha(\vec{x},t)}\psi(\vec{x},t)$ does not satisfy it !

• For the charge particles the solution is the following : in presence of an electromagnetic field the Schrödinger eq. is modified such that

$$\frac{1}{2m} \left(-i\nabla + q\vec{A} \right)^2 \psi = \left(i\frac{\partial}{\partial t} + eV \right) \psi \qquad (*)$$

If we define

$$\psi(\vec{x},t) \to \psi'(\vec{x},t) = e^{-iq/h\alpha(\vec{x},t)}\psi(\vec{x},t)$$

$$A \to A' = A + \nabla\alpha$$

$$V \to V' = V - \frac{\partial\alpha}{\partial t}$$

The eq (*) does not change if

$$\left(\psi, \dot{A}, V\right) \rightarrow \left(\psi', \dot{A}', V'\right)$$

It is one of the most important slide in all our lecture !!

- We could state... that if we impose a local gauge invariance we have to make appearing a field (A, V) !!!
- The existence of a a local invariance $e^{-iq/h\alpha(x,t)}$ imply the existence of an electromagnetic interaction (field V, \vec{A}) proportional to the charge q (the value of q should be determined since is a free parameter of theory !)

Symmetry group \rightarrow interaction (ex : local gauge invariance $\rightarrow \gamma$) $e^{-iq/h\alpha(x,t)} \longrightarrow (A,V)$ of the « classical » electromagnetism We could state... that if we impose a local gauge invariance we have

to make appearing a field. (A, V)If we quantize this field, it is seen as a particle Υ Theory

The charge is the quantum number conserved by this symmetry transformation (the value of q has to be determined : free parameter of theory)

1 boson / 1 quantum number : the charge

Symmetry group \rightarrow interaction (ex : local gauge invariance $\rightarrow \gamma$) But : unification of electromagnetic and weak interaction

Manifestation of an unique phenomena : electroweak interaction

Electromagnetic current (γ) : vector current: γ^{μ}

Neutral current (Z^0) : axial and vector

Charged current (W^{\pm}) : should be of this form (V-A) $\gamma^{\mu}(1-\gamma^5)$

We absorb the term $(1-\gamma^5)$ in the particle spinors: the CC couple only with the left fermions \Rightarrow les CC are like that :

$$j_{\mu}^{-} = \overline{v}\gamma_{\mu} \frac{\left(1 - \gamma^{5}\right)}{2} e = \overline{v_{L}}\gamma_{\mu}e_{L}$$

Parity is put by hands

$$u = u_L + u_R \qquad \Rightarrow j_{\mu}^{elm} = -e\gamma_{\mu}e = -e_L\gamma_{\mu}e_L - e_R\gamma_{\mu}e_R$$

Left doublet

 $j_{\mu}^{\pm} = \chi_{\rm L} \gamma_{\mu} \sigma^{\pm} \chi_{\rm L}$

 $\sigma^{\pm} = \frac{1}{2} \left(\sigma^1 \pm i \sigma^2 \right)$

with $\sigma^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\sigma^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

$$\chi_{\rm L} = \begin{pmatrix} V_e \\ e \end{pmatrix}_L$$

I have to create a group→ structure in families

Looks like the isospin ...

With a 3rd current it correspond to σ^3 : weak isospin symmetry !

$$\sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$j_{\mu}^{3} = \overline{\chi}_{L} \gamma_{\mu} \frac{1}{2} \sigma^{3} \chi_{L} = \frac{1}{2} \overline{\nu}_{L} \gamma_{\mu} \nu_{L} - \frac{1}{2} \overline{e}_{L} \gamma_{\mu} e_{L}$$

If we continue the parallelism of isospin and we consider the weak hypercharge which is related to the 3rd component of the weak isospin

$$Q = I_3 + \frac{Y}{2}$$

 \Rightarrow Hypercharge weak charge :

$j^{ m Y}_{\mu}=2j^{elm}_{\mu}-2j$	$e_{\mu}^{3} = -2\overline{e_{R}}\gamma_{\mu}e_{R} - \overline{e_{L}}\gamma_{\mu}e_{L} - \overline{v_{L}}\gamma_{\mu}v_{L}$					
$j_{\mu}^{elm}=j_{\mu}^{3}+rac{1}{2}j_{\mu}^{ m Y}$						
Symmetry group $SU(2)_L \times$	$U(1)_{Y_{\star}}$					
Weak Isospin(symbol L	Weak Hyper charge :					
concerns only left component)	concern both left and right					
	states					

			Ι	I ₃	Q	Y
	doublet L	ve	1/2	1⁄2	0	-1
		e _L ⁻	1/2	-1/2	-1	-1
leptons	singlet R	e _R -	0	0	-1	-2
		u _L	1/2	1⁄2	2/3	1/3
	doublet L	$d_{\rm L}$	1/2	-1⁄2	-1/3	1/3
	singlet R	u _R	0	0	2/3	4/3
quarks	singlet R	d _R	0	0	-1/3	-2/3

Same for the other families

And we obtain a Lagrangian invariant under $SU(2) \ge U(1)$ transformation which will contain the interactions !

SU(2)

 \dot{J}^{i}_{μ} Coupling to three gauge bosons W^{i}_{μ} with coupling $U^{(1)}_{\mu}$

2 independent coupling constants

$$-i\left[rac{g}{\sqrt{2}}j^{+}_{\mu}\cdot W^{\mu+}+rac{g}{\sqrt{2}}j^{-}_{\mu}\cdot W^{\mu-}+g\,j^{3}_{\mu}\cdot W^{\mu3}+rac{g'}{2}j^{Y}_{\mu}B^{\mu}
ight]$$

we have :

- a neutral current (W_{3}^{μ}) which only has a left-handed component (respecting SU(2)_L)
- a neutral current (B^µ) which couples to left-handed and right-handed particles

• we want :

- the elm current which a left-handed and a right-handed component
- the neutral current which also has a left-handed and a right-handed component
- \Rightarrow Define 2 new fields linked to W₃^µ and B^µ:

$$\begin{split} W_3^{\mu} &= \cos \theta_W Z_0^{\mu} + \sin \theta_W A^{\mu} \\ B^{\mu} &= -\sin \theta_W Z_0^{\mu} + \cos \theta_W A^{\mu} \end{split} \quad \text{The idea is to interpret } A_{\mu} \text{ as the elm field} \end{split}$$

We redefined g, g' into **e**, **g** and θ_{w} and

$$\Rightarrow g \sin \theta_W = e$$

SO many predictions with a little number of parameters :

$\mathbf{e}, \mathbf{g}, \mathbf{\theta}_{\mathbf{W}}$

And in fact all the measurement done sofar all are in agreements with the SM predictions

Problem with the mass scales

remember that

Gauge symmetry :IT WAS ONE OF THE REASON OF USING THE GAUGE
INVARIACE AS A SYMMETRY, BECAUSE IT IMPLIES MASS
OF THE PHOTON TO BE ZERO
$$\psi(\vec{x},t) \rightarrow \psi'(\vec{x},t) = e^{-iq/ha(\vec{x},t)}\psi(\vec{x},t)$$

 $A \rightarrow A' = A + \nabla \alpha$
 $V \rightarrow V' = V - \frac{\partial \alpha}{\partial t}$ The term $L_M = \frac{1}{2} m_{\gamma}^2 A^{\mu} A_{\mu}$ is not gauge invariantExperimentally : $m_Y=0$
(do a very
good extend ... 10^{-17} ...) $m_W = 80 \text{ GeV}$
 $m_Z = 91 \text{ GeV}$

In addition, the mass terms for the fermions are of the form : $-m_f \overline{f}f = -m(\overline{f_L}f_R + \overline{f_R}f_L)$ Which is not gauge invariant ... $\rightarrow m_f = 0$

→ In our model all the particles are massless ... !

Introduction to Standard Model

Short digression on the mass

$$E^{2} = \stackrel{\rightarrow 2}{p} + m^{2} \rightarrow \partial^{\mu}\partial_{\mu} + m^{2}\phi = 0 \iff L = \partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} = 0$$
$$(i\gamma^{\mu}\partial_{\mu} - m) = 0 \iff L = i\overline{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\overline{\psi}\psi$$

Short digression on the mass

$$E^{2} = \vec{p}^{\mu} + m^{2} \rightarrow \partial^{\mu} \partial_{\mu} + m^{2} \phi = 0 \iff L = \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m^{2} \phi^{2} = 0$$
$$(i\gamma^{\mu} \partial_{\mu} - m) = 0 \iff L = i \overline{\psi} \gamma_{\mu} \partial^{\mu} \psi - m \overline{\psi} \psi$$

$$m\overline{\psi}\psi = m\overline{\psi}(P_L + P_R)\psi = m\overline{\psi}(P_L P_L + P_R P_R)\psi =$$
$$= m[(\overline{\psi}P_L)(P_L\psi) + (\overline{\psi}P_R)(P_R\psi)]\psi = m\left(\overline{\psi}R_W + \overline{\psi}R_W + \overline{\psi}R_W\right)$$

The mass should appear in a LEFT-RIGHT coupling

 ψ_{R} : SU(2) singlet ψ_{L} : SU(2) doublet

Adding a doublet

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad \mathbf{I} = \frac{1}{2} \quad \mathbf{Y} = 1$$

The mass terms are not gauge invariant under

The way out : the Higgs mechanism (spontaneous symmetry breaking)

If one uses a complex scalar field $\Phi = 1/\sqrt{2}(\Phi_1 + i\Phi_2)$ Degenerate minima : $\phi_1^2 + \phi_2^2 = v$ with $v = \sqrt{\frac{-\mu^2}{\lambda}}$

The Φ_1 field has a mass (just as before)

No corresponding mass term for the Φ_2 field

Introduction to Standard Model

And in the Standard Model ?

We have just seen that the addition of a well chosen scalar field "modifies" the mass content of the theory

Use a doublet of complex fields

$$\phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} (\phi_{1} + i\phi_{2}) \\ \frac{1}{\sqrt{2}} (\phi_{3} + i\phi_{4}) \end{pmatrix}$$

 $\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$ keep U(1)_{em} invariance

 $M_{\rm v}=0$

Aassive weak gauge bosons :

$$M_W = \frac{1}{2}vg$$

 $M_Z = \frac{1}{2}\frac{vg}{\cos\theta_W}$

The Higgs boson :

 $M_{\rm H} = \sqrt{-2\mu^2}$ is a free parameter

Higgs self-coupling and Higgs couplings to the gauge bosons

These couplings are proportional to the masses

Introduction to Standard Model

The Higgs and the fermions :

The fermions masses are free parameters :

The couplings are fixed : m_f/v

Experimental consequence : the Higgs boson will decay preferentially to heavy particles

Note : this is not the most elegant part of the SM.

The Higgs mechanism allows to explain how the **elementary** particles acquire a mass but says nothing about the values

- Complex doublet scalar field : the Higgs field : 3 components absorbed : masses to the W and Z.
- One remaining component : the Higgs boson
- Higgs field : it is the interaction of the elementary particles with the Higgs field which gives them masses

Higgs discovery, An-Najah National University, Nablus, Palestine

Production (at the LHC)

In the proton : light quarks and gluons \rightarrow small/no direct coupling to H \rightarrow First produce heavy particles !

Higgs discovery, An-Najah National University, Nablus, Palestine

Decay (at the LHC)

The first experimental proposals (LoI) for ATLAS and CMS: 1992

Discovery 20 years latter!

See the presentation from David Rousseau for more details

Nowadays : Higgs boson precision measurements !

Introduction to Standard Model

Overall precision: 0.2%

Marumi Kado @ CERN Summer School 2018

Marumi Kado @ CERN Summer School 2018

Introduction to Standard Model

Up to now it looks like a Standard Model Higgs

Introduction to Standard Model