Introduction

†o

Particle Physics

Marie-Hélène Schune and Achille Stocchi LAL-Orsay Université Paris-Sud and IN2P3/CNRS

- Introduction to Particle Physics
- The strong interaction
- The weak interaction
+ EXCERCISES!
- The Standard Model and Higgs
- Few open questions

Chapter I

Introduction

†o

Particle Physics

What is

particle physics
about?

The particle world

 The laws of « this world » are not really intuitive..

$$
\begin{gathered}
E=m c^{2} \\
\text { High Energy Physics }
\end{gathered}
$$

Mass/Energy

$\longrightarrow \quad$ New particles production

Particle world is described by quantum field theory
It is our main working tool for particles physics
It comes from the marriage between quantum mechanics and relativity

The particle world : Physics of the two-infinities

Particles (which are very small < objects») of high energy are instruments to go back in time (very large scales)

The mass

Defined by : $m^{2} c^{4}=E^{2}-p^{2} c^{2} \longleftarrow \quad$ Invariant length of the Energy-momentum 4-vector

$$
\begin{aligned}
& \text { With } c=1 E, p \text { and } m \text { are ex } \\
& \text { When } p=0 \Rightarrow E=m c^{2}
\end{aligned}
$$

- When v increases $\Rightarrow E^{2}$ et $p^{2} c^{2}$ increase but their difference remains constant
- m is a Lorentz invariant

New particles production:

It is not "divisibility"!

Since c is large small mass

Large energy

A particle is a lump of energy

Mass/energy

MICROSCOPIC WORLD

Thompson experiment

Determination of the quantum nature and the value of the electric charge for electrons

```
```

Today

```
```

Today
- e=1.602176462(63)10-19 C
- e=1.602176462(63)10-19 C
- m=9.10938188(72)10 -31 kg

```
```

 - m=9.10938188(72)10 -31 kg
    ```
```

Millikan experiment m / e for electrons

1 Joule $=1$ Coulomb* 1 Volt
1 eV = Energy for an electron fealing a potential difference of 1 V $1 \mathrm{eV}=1.610^{-19}$ Joule
$m c^{2}=9.110^{-31} \mathrm{~kg} \times\left(310^{8}\right)^{2} \mathrm{~m}^{2} / \mathrm{sec}^{2}=5010^{4} \mathrm{eV}$
$1 \mathrm{eV} / \mathrm{c}^{2}=1.7810^{-36} \mathrm{~kg}$

$$
\begin{aligned}
& m_{e}=0.5 \mathrm{MeV} / \mathrm{c}^{2}=0.5 \mathrm{MeV}(c=1) \\
& m_{p}=938 \mathrm{MeV} \approx 1 \mathrm{GeV}
\end{aligned}
$$

$$
\mathrm{KeV}\left(10^{3} \mathrm{eV}\right)
$$

$$
\mathrm{MeV}\left(10^{6} \mathrm{eV}\right)
$$

$$
\mathrm{GeV}\left(10^{9} \mathrm{eV}\right)
$$

$$
\mathrm{TeV}\left(10^{12} \mathrm{eV}\right)
$$

Elementary particles

3 families of fermions : matter

+ anti-matter!

3 forces : electromagnetism, weak interaction, strong interaction

And the Higgs boson!
The particles are characterized by : -their spin
-their mass
-the quantum numbers (charges) determining their interactions

All our knowledge is today « codified» in the Standard Model :
Matter, Interaction, Unification Interaction, Unification

The fermions and their masses

The interactions and their mediators

91.2 GeV
 $\begin{aligned} & 0 \\ & 1\end{aligned} \geq 0$
 z boson

80.4 GeV
${ }^{*} W^{ \pm}$
W boson

Electromagnetism
10^{-2}

Strong interaction
1

$$
\mathrm{m}=91.2 \mathrm{GeV}
$$

$$
m=0
$$

$m=0$

Weak interaction

Gravity :

negligible at the scale of elementary particles We do not know today how to quantify it

Probe the underlying structure of matter

Production of new particles

$$
E=M c^{2}
$$

(High energy physics

| Quantum | Electromagnetism | Special | Gravity |
| :--- | :---: | :---: | :---: |
| Mechanics | (Maxwell's Theory) | Relativity | (Newton's Theory) |

Physical Theories now:

Standard Model
General Relativity

Anti-matter ?

To each particle one can associate an anti-particle : same mass but all quantum numbers opposite

Anti-Matter

In 1931 Dirac predicts the existence of a particle similar to the electron but of charge +e

Two important observables:

 Lifetime/Width : τ / Γ Cross Section : σ
Lifetime : τ

Lifetime : the exponential law

Instable particles and nuclei : number of decays per unit of time ($\Delta \mathrm{N} / \Delta \mathrm{T}$) proportional to the number of particles/nuclei (N)

```
N= cte }\timesN\times\Deltat=>\mathrm{ exponential law
```

$$
N(t)=N_{0} e^{-t}(\tau)
$$

Mean lifetime (defined in the particle rest frame)

The majority of the particles are instable

$$
\begin{gathered}
\tau \text { from } 10^{-23} \sec \text { (resonances) } \\
\text { to } \sim 10^{+3} \sec \text { (neutron) }
\end{gathered}
$$

The probability for a radioactive nucleus to decay during a time interval t, does not depend on the fact that the nucleus has just been produced or exists since a time T :
$\left[\begin{array}{l}\text { Survival probability } \\ \text { after the time } \mathbf{T}+\mathbf{t}\end{array}\right]=\left[\begin{array}{l}\text { Survival probability } \\ \text { after the time } \mathbf{T}\end{array}\right] \times\left[\begin{array}{l}\text { Survival probability } \\ \text { after the time } \mathbf{t}\end{array}\right] \quad \mathrm{e}^{a+\mathrm{b}}=\mathrm{e}^{\mathrm{a}} \times \mathrm{e}^{\mathrm{b}}$

Few important examples of different lifetimes

- Stable particles : $\gamma, \mathrm{e}, \mathrm{p}, \nu \rightarrow$ the only ones!
proton stability $\tau(p)>\sim 10^{32}$ ans
- particles with long lifetimes:

$$
\begin{array}{lr}
\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}} & \tau=6.13 \quad 10^{+2} \mathrm{sec}, \beta \text { decay } \\
\mu^{-} \rightarrow \mathrm{e}^{-}+\bar{v}_{\mathrm{e}}+v_{\mu} & \tau=2.2 \\
\pi^{+} \rightarrow \mu^{+} v_{\mu} \text { (mainly) } & \tau=2.6 \quad 10^{-8} \mathrm{sec}, \text { cosmic rays } \\
\mathrm{K}^{+} & \tau=1.2 \quad 10^{-8} \mathrm{sec}
\end{array}
$$

- particle with short lifetimes:

| D^{+} | $\tau=1.04 \quad 10^{-12} \mathrm{sec}$ |
| :--- | ---: |
| B^{+} | $\tau=1.6 \quad 10^{-12} \mathrm{sec}$ |
| $\Delta^{++} \rightarrow \mathrm{N} \pi$ | $\tau \sim 10^{-23} \mathrm{sec}$ |

particles which can be directly detected

- The lifetimes are given in the particle rest frame
- What we see is the lifetime in the laboratory rest frame
\rightarrow one should take into account the relativistic time dilation
\rightarrow In real life one measures lengths in the detector

Boost \times lifetime

- Some particles are seen as stable in the detectors.
- Example a pion ($\mathrm{c} \tau=7.8 \mathrm{~m}$) :
if $\mathrm{E}_{\pi}=20 \mathrm{GeV} \rightarrow \gamma=20 / \mathrm{m}_{\pi}=142.9$;
$=0.999975$
«Event display » of the BELLE experiment

$$
\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B} \overline{\mathrm{~B}}, \mathrm{E}_{\mathrm{CM}}=10.58 \mathrm{GeV}\right)
$$

$\rightarrow \quad \mathrm{L}=1114.3 \mathrm{~m}$
particles which can be directly detected in the detector : $\mathrm{n}, \gamma, \mathrm{e}, \mathrm{p}, \mu, \pi^{ \pm}, \mathrm{K}^{ \pm}$

Width : Γ

- The uncertainty principle from Heisenberg for an unstable particle is :

Uncertainty on the mass (width Γ) due to τ

The faster the decay, the larger the uncertainty on m
Stable particle \leftrightarrow well defined mass state
$\hbar c=197 \mathrm{MeV} \times 1 \mathrm{fm} \quad ; \quad \hbar=\frac{197 \times 10^{-15}}{3.10^{8}}=6.58210^{-22} \mathrm{MeV} . \mathrm{s}$
Measuring widths, one is able to have information on very small lifetimes. This is the way one can have information on a phenomenon extremely fast (the fastest in Nature?...) : a particle with a lifetime of $10^{-23} \mathrm{sec}$)

| Decay | mc ${ }^{2}$ | τ | $\Gamma \mathrm{c}^{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{-} \pi^{+}$ | 892 MeV | $1.310^{-23} \mathrm{~s}$ | 51 MeV |
| $\pi^{0} \rightarrow \gamma \gamma$ | 135 MeV | $8.410^{-17} \mathrm{~s}$ | 8 eV |
| $\mathrm{D}_{\mathrm{s}} \rightarrow \phi \pi^{+}$ | 1969 MeV | $0.510^{-12} \mathrm{~s}$ | $10^{-3} \mathrm{eV}$ |

- Schrödinger equation (free particle with energy E_{0}):

$$
\begin{aligned}
& i \hbar \frac{\partial \psi}{\partial t}=H \psi=E_{0} \psi \\
& \Rightarrow \psi=a e^{-\frac{i}{\hbar} E_{0} t} \\
& \Rightarrow \psi=a e^{-i \frac{c^{2}}{\hbar} m_{0} t}\left(\text { particle rest frame } E_{0}=m_{0} c^{2}\right)
\end{aligned}
$$

Message a particle with a given mass and witdh is a resonannce with a Breit-Wigner

- stable particle: $\quad|\psi(t)|^{2}=|\psi(0)|^{2}=\left|a_{0}\right|^{2}$
- unstable particle $: \Rightarrow \psi(t)=a_{0} e^{-i \frac{c^{2}}{\hbar}\left(m_{0}-i \frac{\Gamma}{2}\right) t} \Rightarrow a=a_{0} e^{-\frac{t}{2 \tau}} \Rightarrow|\psi(t)|^{2}=|\psi(0)|^{2} e^{-t / \tau}$

We want the probability to find a state of energy E

$$
A(E)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} \psi(t) e^{\frac{i}{\hbar} E t} d t \propto \frac{1}{\left(E-m_{0} c^{2}\right)+i \frac{\Gamma c^{2}}{2}}
$$

Probability $=|\mathrm{A}|^{2}$

$$
\Rightarrow|A|^{2} \propto \frac{1}{\left(E-m_{0} c^{2}\right)^{2}+\Gamma^{2} c^{4} / 4}
$$

Several possible final states (decay modes/channels):

\Rightarrow branching ratios $\left(\mathrm{BR}_{\mathrm{i}}\right)$: probability to obtain a final state $\mathrm{i}\left(\sum_{\mathrm{i}} \mathrm{BR}_{\mathrm{i}}=1\right)$ partial width Γ_{i} (definition): $\quad \mathrm{BR}_{\mathrm{i}}=\Gamma_{\mathrm{i}} / \Gamma$

Relation between lifetime, partial widths and branching ratios :

$$
\tau=\frac{\hbar}{c^{2}} \frac{1}{\Gamma}=\frac{\hbar}{c^{2}} \frac{B R_{i}}{\Gamma_{i}}
$$

Example : Z^{0} partial widths

$$
J=1
$$

Charge $=0$
Mass $m=91.1882 \pm 0.0022 \mathrm{GeV}[d]$ Full width $\Gamma=2.4952 \pm 0.0026 \mathrm{GeV}$ $\Gamma\left(\ell^{+} \ell^{-}\right)=84.057 \pm 0.099 \mathrm{MeV}^{[b]}$
$\Gamma($ invisible $)=499.4 \pm 1.7 \mathrm{MeV}[e]$
Γ (hadrons) $=1743.8 \pm 2.2 \mathrm{MeV}$
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=0.9999 \pm 0.0032$
$\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0012 \pm 0.0036{ }^{[f]}$

You can see that Z^{0} in different decay modes has always the same width which is related to his lifetime

Example:

$\Lambda \rightarrow \mathrm{p} \pi$ in 64% of the cases
$\Lambda \rightarrow \mathrm{n} \pi^{0}$ in 36% of the cases

Experimental spectra

experimental spectrum $\mathrm{K}^{-} \pi^{+}$:

- Search for a K^{-}and a π^{+}in the detector and computation of the invariant mass

Fitted by a Breit-Wigner $\Gamma=51 \mathrm{MeV}$

π^{0} experimental spectrum :

2γ reconstruction and computation of the invariant mass.

PDG $\rightarrow \quad \tau=8.4 \times 10^{-17} \mathrm{~s}$

$\Gamma=8 \mathrm{eV}$
Fit by a gaussian

$\underline{D}_{\underline{s}}$ experimental spectrum : $\left(\mathrm{D}_{\mathrm{s}} \rightarrow \phi \pi^{+}\right.$and $\left.\phi \rightarrow \pi^{+} \pi^{-}\right)$

PDG $\rightarrow \tau=500 \times 10^{-15} \mathrm{~s}$

But one sees >> $10^{-3} \mathrm{eV}$
Fit by a gaussian $\sigma \sim 10 \mathrm{MeV}$

$$
\tau\left(D_{s}\right):
$$

Measurement of the D_{s} :lifetime

$$
t=\frac{L \cdot m}{p}
$$

t : proper time

Experiment CLEO : $\tau\left(\mathrm{D}_{\mathrm{s}}\right)=486.3 \pm 15.0 \pm 5.0 \mathrm{fs}$

Cross Section : σ

$$
\frac{d N_{\text {int }}}{d t d V}=n_{1} v_{1} n_{2} \sigma
$$

The number of interactions per unit of volume and time is thus defined by

- The physics processes σ are «hidden» in this term
- The number of particles per unit of volume in the beam $\left(n_{1}\right)$
- The number of particles per unit of volume in the target $\left(n_{2}\right)$
- $\sigma:[\mathrm{L}]^{2}$
- 1 barn $=10^{-24} \mathrm{~cm}^{2}$

Parentheis : From cross section \rightarrow number of produced event : the luminosity
stantaneous luminosity
$\begin{aligned} & \text { Number of } \\ & \text { interactions } / \mathrm{s}\end{aligned} \frac{d N}{d t}=$

$$
\frac{d N_{\mathrm{int}}}{d t d V}=n_{1} v_{1} n_{2} \sigma
$$

$$
\frac{d N}{d t d V}=\frac{n 1}{V} \frac{d}{c} \frac{n 2}{V} \sigma d V=\frac{n 1}{2 \pi R s x s y} \frac{2 \pi R}{c} n 2 \sigma=\frac{n 1}{s x s y} f n 2 \sigma
$$

$$
L=\frac{k f N_{+} N_{-}}{s_{x} s_{y}}
$$

$$
k \text { bunches }
$$

$f(=c / c i r c u m f e r e n c e)$ frequency
N_{+}: number of electrons in a bunch
$N_{\text {- }}$: number of positrons in a bunch

An example : PEP-2 (where

 BaBar detector was installed)| Circumference | 2200 m |
| :--- | :--- |
| $\mathrm{I}\left(\mathrm{e}^{-}\right)$ | 0.75 A |
| $\mathrm{I}\left(\mathrm{e}^{+}\right)$ | 2.16 A |
| $\mathrm{~N}_{\text {paquets }}$ | 2×1658 |
| $\mathrm{~N}\left(\mathrm{e}^{-}\right) /$bunch | 2.110^{10} |
| $\mathrm{~N}\left(\mathrm{e}^{+}\right) /$bunch | 6.010^{10} |
| Beams size | $\mathrm{s}_{\mathrm{x}}=150 \mu \mathrm{~m}, \mathrm{~s}_{\mathrm{y}}=5 \mu \mathrm{~m}$ |

$$
I(e)=\left[\frac{C^{2}}{s} \longleftarrow\right. \text { time }
$$

$$
I(e)=N(e) \times q_{e} \times N_{\text {bunches }}^{e} \times \frac{c}{L_{\text {circ }}}
$$

$$
\begin{aligned}
& L=\frac{k f N_{+} N_{-}}{s_{x} s_{y}} \\
& \Rightarrow L=310^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Macroscopic quantity \rightarrow relates the microscopic world (σ) to a number of events
$\frac{d N}{d t}=L \cdot \sigma$

Introduction to

the interactions

Interactions : introduction

Classical physics:

The particle P_{1} creates around it a force field. If one introduces the particle P_{2} in this field it undergoes the force.

Electrostatic example :

$$
\begin{array}{cccc}
\mathrm{P}_{1} & \vec{F} & \vec{E} & \mathrm{P}_{2} \\
\mathrm{o}_{1} & r & \mathrm{q}_{2} \\
\mathrm{q}_{1} & \\
\vec{F}=q_{2} \stackrel{\rightharpoonup}{E}(r)=q_{2} \frac{k q_{1}}{r^{2}} \overrightarrow{u_{r}}
\end{array}
$$

«modern» physics:

P_{1} and P_{2} exchange a field quantum; the interaction boson

$$
\begin{aligned}
& P_{1} \quad P_{2} \quad \text { The heavier the ball, the } \\
& \text { - n } \Omega \text { ro } \\
& \text { The heavier the ball, the } \\
& \text { more difficult it will be to } \\
& \text { throw it far away }
\end{aligned}
$$

Range of the interaction $\propto 1 /$ mass of the vector

- Creation and exchange of an interaction particle
\Rightarrow violation of the energy conservation principle during a limited time

- During Δt the particle can travel $R=c \Delta t$

$$
R=\frac{\hbar c}{m c^{2}}
$$

$$
\text { Range } \rightarrow \text { « reduced » wave length (Compton) }
$$

with $\hbar c \cong 197.3 \mathrm{MeV} \mathrm{fm}$

Example : an interaction particle with $m=200 \mathrm{MeV} \Leftrightarrow R=1 \mathrm{fm}$

| Force | Relative intensity
 (order of magnitude) | Vector | Lifetime (order
 of magnitude) |
| :--- | :--- | :--- | :--- |
| Strong | 1 | Gluons | $10^{-24} \mathrm{~s}$ |
| electromagnetic | 10^{-2} | Photon | $10^{-19}-10^{-20} \mathrm{~s}$ |
| Weak | 10^{-5} | W and Z | $10^{-16}-10^{+3} \mathrm{~s}$ |
| Gravitation | 10^{-40} | Graviton | $? ? ?$ |

For the strong, electromagnetic and gravitational interactions these orders of magnitudes can be obtained comparing the binding energy of 2 protons separated by ~ 1 fm

The intensity of the interactions dictates the particles lifetimes and their interaction cross sections.

Klein-Gordon equation for a spin 0 particle :
$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
$(i \hbar)^{2} \frac{\partial^{2} \psi}{\partial t^{2}}=(i \hbar)^{2} c^{2} \nabla^{2} \psi+m^{2} c^{4} \psi$

$-\frac{\partial^{2} \psi}{\partial t^{2}}=-c^{2} \nabla^{2} \psi+\frac{m^{2} c^{4}}{\hbar^{2}} \psi$
$\Rightarrow \nabla^{2} \psi-\frac{m^{2} c^{2}}{\hbar^{2}} \psi-\frac{\partial^{2}}{g^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0$
(one only deals with stationary states)
$\nabla^{2} \psi-\frac{m^{2} c^{2}}{\mathrm{~h}^{2}} \psi=0$
In spherical symmetry : $\psi=\mathrm{U}(\mathrm{r})$ and $\Delta \mathrm{U}(\mathrm{r})=\nabla^{2} \mathrm{U}(\mathrm{r})=\frac{1}{r^{2}} \frac{d}{d r} \frac{d U(r)}{d r} \frac{m^{2} c^{2}}{\mathrm{~h}^{2}} U(r)$

$$
\begin{array}{ll}
\text { if } m \neq 0: & \\
U(r)=-\frac{g^{2}}{r} e^{-r / R} & r>0 \\
R=\frac{\hbar}{m c} & \\
& \text { Range }
\end{array}
$$

if $m=0$:

$$
\begin{aligned}
& r>0 \\
& q_{i}=\text { charge }
\end{aligned}
$$

In this case the Yukawa potential is equivalent to the Coulomb one

Electromagnetism (QED)

- Between charged particles
- Vector of the interaction : the photon (γ)
- One Feynman graph for QED:

R. Feynman

An e- which emits a γ and moves back. The γ is absorbed by an other e^{-}whose direction is modified

Feynman graph

- A powerful « graphical » method to display the interaction in perturbations theory (each diagram is a term in the perturbation series)
- Each graph is equivalent to « a number»
$\forall \rightarrow$ computation of the matrix elements and of the transition probabilities
\qquad particle

$\imath \Omega \Omega \backsim$ Vector boson of the interaction

- Horizontal axis : the time
- Lines are particles which propagate in space-time
- The • represent the vertices «location» of the interaction (where there is quantum number conservation)

Feynman rules:
External lines: fields
(spinors, vectors, ...)
Vertex: $\sqrt{ } \alpha$ factor in the matrix element « interaction intensity »

Propagator:
factor ig ${ }_{v v} /\left(q^{2}-m^{2}\right)$ (depends also on
spin ...)

$$
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\frac{1}{137}
$$

Virtual particles

Example QED : $\mathrm{e}^{+} \mathrm{e}^{-}$symmetric collision in the rest frame

$$
\begin{aligned}
& E_{e+}+E_{e-}=E_{\gamma} \\
& \overrightarrow{p_{+}}+\overrightarrow{p_{-}}=\overrightarrow{p_{\gamma}} \\
& m_{\gamma}^{2}=2 m_{e}^{2}+2 E_{e+} E_{e-}-2 p_{+} p_{-} \cos \theta
\end{aligned}
$$

In the rest frame : $\quad \overrightarrow{p_{+}}+\overrightarrow{p_{-}}=\overrightarrow{p_{\gamma}}=\overrightarrow{0}$
$\theta=\pi \Rightarrow m_{\gamma}^{2}=2 m_{e}^{2}+2 E_{e+} E_{e_{-}}+2 p_{+} p_{-}$
incompatible with $m_{\gamma}=0$
The γ is « off-shell »

It can be interpreted as :
Violation of the energymomentum conservation law

Or
Creation of a massive virtual photon during a «short» time
the γ can only exist virtually thanks to $\Delta E . \Delta t \approx \hbar$
2γ production going in opposite directions
\rightarrow energy-momentum conservation

The way we see the electron and the photon is modified
electron :
e-
The electron emits and absorbs all the time virtual γ, it can be seen as :

=> Theoretical (α «running »), Vacuum polarization and experimental ($\mathrm{g}-2$) consequences
photon :

(g-2) : Experimental evidence of the vacuum polarisation

Gyro-magnetic ratio g

- The magnetic moment associated associated to the angular momentum of the electron

$$
\begin{aligned}
& \vec{\mu}=I S \vec{n}=\frac{e}{\frac{2 \pi r}{v}} \pi r^{2} \vec{n}=\frac{e}{2 m}(m v r) \vec{n} \begin{array}{r}
\vec{n} \\
\text { Angular } \\
\text { momentum } \\
\hbar \ell
\end{array} \\
& \mu=\mu_{B} \ell \quad \text { with } \quad \mu_{B}=\frac{e \hbar}{2 m} \quad \text { Bohr magneton } \\
& \vec{\mu}=\mu_{B} \vec{L}
\end{aligned}
$$

- Intrinsic magnetic momentum :

Dirac : for spin $1 / 2$ point-like particles: $g=2$

The value of g is modified by :

$$
+\ldots
$$

One defines $a=\frac{g-2}{2}=\frac{g}{2}-1=\frac{\alpha}{2 \pi}+\ldots \approx \frac{1}{800}$

| $a=0.00115965241 \pm 0.00000000020$ | experiment $\left(10^{-11}\right.$ precision $)$ |
| :--- | :--- |
| $a=0.00115965238 \pm 0.00000000026$ | theory $\left(\alpha^{3}\right)$ |

Gravitational Force

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \quad \underset{m_{1}}{\stackrel{r}{\longleftrightarrow}} \underset{m_{2}}{\longrightarrow} \quad \begin{aligned}
& G=6.67259(85) 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{sec}^{2}} \\
& \text { Newton constant }
\end{aligned}
$$

To compare with the electromagnetic force for the hydrogen atom

$$
\begin{aligned}
& \frac{e^{2}}{4 \pi \varepsilon_{0} \mathrm{hc}}=\alpha \geqslant \frac{1}{137} \\
& \frac{G m_{e} m_{p}}{\hbar c}=\alpha_{\text {grav }} \approx 3.3 \times 10^{-42}
\end{aligned}
$$

The effects of gravitation are very small
at the atom scale \rightarrow neglected..

- Important effects if $\alpha_{\text {grav }} \sim 1$

$$
\frac{G m^{2}}{\hbar c} \sim 1 \Rightarrow m c^{2} \sim 10^{19} \mathrm{GeV}
$$

- For energies much lower than $10^{19} \mathrm{GeV}$ we can neglect gravitational effects
- Actually there is not satisfactory theory for gravitation

More in details on cross section and width.

The total cross section σ for a collision is $\mathrm{a}+\mathrm{b} \rightarrow 1+2+\ldots$
The width for a decay Γ is $a \rightarrow 1+2+\ldots n$

Both are described by Feymann diagrams

All traduce the probability that a pheomena occurs.

Why «Kinematics»? Because the probability that a phenomena occurs depends on the number of kinematical configurations «opened» for the process. More configurations opened \rightarrow larger cross section and larger width (or smaller lifetime).

What we have in «Physics»? For instance we have couplings ! Stronger is the coupling \rightarrow larger cross section and larger width (or smaller lifetime).

Interactions : summary

- The interactions are mediated by vector bosons interaction range $\propto 1 /$ mass
- Feynman graph = display of a matrix element of the transition in the perturbations series framework
- Virtual particles (off-shell particles during a short time)
- QED: electric charge, γ, vacuum polarisation, $\alpha \nearrow$ with energy

Strong interaction (discussed in devoted lectures)

Weak interaction (discussed in devoted lectures)

- QCD: colour, gluons (self-interaction), $\alpha_{s} \searrow$ with energy (asymptotic freedom)
- Weak: concerns all fermions, $\mathrm{W}^{ \pm}, \mathrm{Z}^{0}$

