Introduction Particle Physics

Marie-Hélène Schune and Achille Stocchi LAL-Orsay Université Paris-Sud and IN2P3/CNRS

- Introduction to Particle Physics
- The strong interaction
- The weak interaction
- The Standard Model and Higgs
- Few open questions

Chapter I

Introduction

Particle Physics

 \mathbf{TO}

The particle world

The laws of « this world » are not really intuitive...

$e = 1.602176462(63) 10^{-19} C$ $m = 9.10938188(72) 10^{-31} kg$

Particle world is described by quantum field theory

It is our main working tool for particles physics

It comes from the marriage between quantum mechanics and relativity

The particle world : Physics of the two-infinities

The mass

- When $p=0 \Rightarrow E = mc^2$
- When v increases $\Rightarrow E^2$ et p^2c^2 increase but their difference remains constant
- *m* is a Lorentz invariant

Thompson experiment Determination of

MICROSCOPIC WORLD

Determination of the quantum nature and the value of the electric charge for electrons

Millikan experiment

Today

- $-e = 1.602176462(63) 10^{-19} C$
- $-m = 9.10938188(72) 10^{-31} \text{ kg}$

1 Joule =1Coulomb*1 Volt

1eV = Energy for an electron fealing a potential difference of 1 V $1eV = 1.6 \ 10^{-19}$ Joule

 $mc^2 = 9.1 \ 10^{-31} \ kg \times (3 \ 10^8)^2 \ m^2/sec^2 = 50 \ 10^4 \ eV$

$$m_e = 0.5 MeV/c^2 = 0.5 MeV (c=1)$$

 $m_p = 938 \text{ MeV} \approx 1 \text{ GeV}$

 $1eV/c^2 = 1.78 \ 10^{-36} \ kg$

KeV ($10^{3} eV$) $MeV (10^6 eV)$ $GeV(10^9 eV)$ TeV (10¹² eV)

Elementary particles

3 families of fermions : matter

+ anti-matter !

3 forces : electromagnetism, weak interaction, strong interaction

And the Higgs boson !

The particles are characterized by : •their spin

•their mass

•the quantum numbers (charges) determining their interactions

All our knowledge is today « codified » in the **Standard Model** :

Matter, Interaction, Unification Interaction, Unification

The fermions and their masses

1st family

2nd family

3rd family

negligible at the scale of elementary particles We do not know today how to quantify it

Anti-matter ?

To each particle one can associate an anti-particle : same mass but all quantum numbers opposite

-2/3

+1/3

In 1931 Dirac predicts the existence of a particle similar to the electron but of charge +e

Two important observables : Lifetime/Width: τ/Γ Cross Section : σ

Lifetime: τ

Lifetime : the exponential law

Instable particles and nuclei : number of decays per unit of time

 $(\Delta N/\Delta T)$ proportional to the number of particles/nuclei (N)

The probability for a radioactive nucleus to decay during a time interval t, does not depend on the fact that the nucleus has just been produced or exists since a time T :

 $\begin{bmatrix} Survival \text{ probability} \\ after the time T + t \end{bmatrix} = \begin{bmatrix} Survival \text{ probability} \\ after the time T \end{bmatrix} \times \begin{bmatrix} Survival \text{ probability} \\ after the time t \end{bmatrix} e^{a+b} = e^a \times e^b$

Few important examples of different lifetimes

• Stable particles : γ , e, p, $\nu \rightarrow$ the only ones !

proton stability $\tau(p) > \sim 10^{32}$ ans

• particles with long lifetimes :

 $\begin{array}{ll} n \rightarrow p + e^{-} + \overline{\nu}_{e} & \tau = 6.13 \ 10^{+2} \, \text{sec}, \ \beta \ \text{decay} \\ \mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu} & \tau = 2.2 \ 10^{-6} \, \text{sec}, \ \text{cosmic rays} \\ \pi^{+} \rightarrow \mu^{+} \ \nu_{\mu} \ (\text{mainly}) & \tau = 2.6 \ 10^{-8} \, \text{sec} \\ K^{+} & \tau = 1.2 \ 10^{-8} \, \text{sec} \end{array}$

• particle with short lifetimes :

D⁺ τ =1.04 10⁻¹² sec B⁺ τ =1.6 10⁻¹² sec Δ⁺⁺→N π τ ~ 10⁻²³ sec particles which can be directly detected

- The lifetimes are given in the particle rest frame
- What we see is the lifetime in the laboratory rest frame

 \rightarrow one should take into account the relativistic time dilation

 \rightarrow In real life one measures lengths in the detector

 $L = \beta \gamma \times c\tau$ Boost × lifetime

- Some particles are seen as stable in the detectors.
- Example a pion ($c\tau = 7.8m$) :

if $E_{\pi} = 20 \text{ GeV} \rightarrow \gamma = 20/m_{\pi} = 142.9$; $\beta = 0.999975$

→ L = 1114.3m

« Event display » of the BELLE experiment (e⁺e⁻ → $B\overline{B}$, E_{CM} =10.58 GeV)

particles which can be directly detected in the detector : n, γ ,e, p, μ , π^{\pm} , K[±]

<u> Width : Г</u>

• The uncertainty principle from Heisenberg for an unstable particle is :

Measuring widths, one is able to have information on very small lifetimes. This is the way one can have information on a phenomenon extremely fast (the fastest in Nature?...) : a particle with a lifetime of 10⁻²³ sec)

Decay	mc ²	τ	Γ c ²	
$K^{*0} \rightarrow K^{-} \pi^{+}$	892 MeV	1.3 10 ⁻²³ s	51 MeV 🗸	Measurable width
$\pi^0 \rightarrow \gamma \gamma$	135 MeV	8.4 10 ⁻¹⁷ s	8 eV	
$D_s \rightarrow \phi \pi^+$	1969 MeV	0.5 10 ⁻¹² s	10 ⁻³ eV	
	Meas	urable lifetimes		10

18

Breit-Wigner

.

(approximate computations)

E-m₀=- $\Gamma/2$ E-m₀=+ $\Gamma/2$

 m_0

• Schrödinger equation (free particle with energy E₀):

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi = E_0\psi$$

 $\Rightarrow \psi = ae^{-\frac{i}{\hbar}E_0t}$
 $\Rightarrow \psi = ae^{-\frac{i}{\hbar}e_0t}$ (particle rest frame E₀=m₀c²)
- stable particle : $|\psi(t)|^2 = |\psi(0)|^2 = |a_0|^2$
 $= unstable particle : $|\psi(t)|^2 = |\psi(0)|^2 = |a_0|^2$
 $= unstable particle : $\Rightarrow \psi(t) = a_0e^{-t\frac{c^2}{\hbar}(m_0-t\frac{r}{2})t}$ $\Rightarrow a = a_0e^{-\frac{t}{2r}} \Rightarrow |\psi(t)|^2 = |\psi(0)|^2 e^{-t/r}$
We want the probability to find a state of energy E
 $A(E) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} \psi(t)e^{\frac{i}{\hbar}Et}dt \propto \frac{1}{(E-m_0c^2)+i\frac{\Gamma c^2}{2}}$
Probability = |A|²$$

$$\Rightarrow \left| \mathbf{A} \right|^2 \propto \frac{1}{\left(\mathbf{E} - m_0 \mathbf{c}^2 \right)^2 + \Gamma^2 \mathbf{c}^4 / 4}$$

Ε

Several possible final states (decay modes/channels) :

⇒ branching ratios (BR_i) : probability to obtain a final state i (Σ_i BR_i=1) partial width Γ_i (definition) : BR_i= Γ_i/Γ

Relation between lifetime, partial widths and branching ratios :

J = 1

Example:

 $\Lambda \rightarrow p\pi$ in 64 % of the cases $\Lambda \rightarrow n\pi^0$ in 36 % of the cases

Example : Z⁰ partial widths

 $\begin{array}{l} \text{Charge} = 0 \\ \text{Mass } m = 91.1882 \pm 0.0022 \ \text{GeV} \ ^{[d]} \\ \text{Full width } \Gamma = 2.4952 \pm 0.0026 \ \text{GeV} \\ \Gamma(\ell^+ \, \ell^-) = 84.057 \pm 0.099 \ \text{MeV} \ ^{[b]} \\ \Gamma(\text{invisible}) = 499.4 \pm 1.7 \ \text{MeV} \ ^{[e]} \\ \Gamma(\text{hadrons}) = 1743.8 \pm 2.2 \ \text{MeV} \\ \Gamma(\mu^+ \, \mu^-) / \Gamma(e^+ \, e^-) = 0.9999 \pm 0.0032 \\ \Gamma(\tau^+ \, \tau^-) / \Gamma(e^+ \, e^-) = 1.0012 \pm 0.0036 \ ^{[f]} \end{array}$

You can see that Z⁰ in different decay modes has always the same width which ' is related to his lifetime

Experimental spectra

experimental spectrum $K^{-}\pi^{+}$:

• Search for a K⁻ and a π^+ in the detector and computation of the invariant mass

<u> π^0 experimental spectrum :</u>

 2γ reconstruction and computation of the invariant mass.

<u>D_s experimental spectrum</u>: (D_s $\rightarrow \phi \pi^+$ and $\phi \rightarrow \pi^+ \pi^-$)

 $\tau(D_s)$:

Measurement of the D_s lifetime

 $t = \frac{L \cdot m}{p}$ t: proper time

Experiment CLEO : $\tau(D_s)$ = 486.3±15.0±5.0 fs

Cross Section : σ

$$\frac{dN_{\rm int}}{dtdV} = n_1 v_1 n_2 \sigma$$

The number of interactions per unit of volume and time is thus defined by

- The physics processes σ are « hidden » in this term
- The number of particles per unit of volume in the beam (n_1)
- The number of particles per unit of volume in the target (n_2)
- $\sigma : [L]^2$
- 1 barn = 10^{-24} cm²

Parentheis : From cross section \rightarrow number of produced event : the luminosity

$$L = \frac{kfN_{+}N_{-}}{S_{x}S_{y}}$$

k bunches

f (=c/circumference) frequency

 N_+ : number of electrons in a bunch

 N_{-} : number of positrons in a bunch

An example : PEP-2 (where BaBar detector was installed)

Circumference	2200 m	
l(e⁻)	0.75 A	
l(e ⁺)	2.16 A	
N _{paquets}	2 x 1658	
N(e ⁻)/bunch	2.1 10 ¹⁰	
N(e ⁺)/bunch	6.0 10 ¹⁰	
Beams size	s _x =150 μm, s _y =5 μm	

$$L = \frac{k f N_+ N_-}{S_x s_y}$$

$$\Rightarrow$$
 L=3 10³³ cm⁻² s⁻¹

Macroscopic quantity \rightarrow relates the microscopic world (σ) to a number of events

$$\frac{dN}{dt} = L \cdot \sigma$$

Interactions : introduction

Classical physics :

The particle P_1 creates around it a force field. If one introduces the particle P_2 in this field it undergoes the force.

Electrostatic example :

«modern» physics:

 P_1 and P_2 exchange a field quantum; the interaction boson

 $P_1 \qquad P_2 \\ \bullet \checkmark \checkmark \checkmark \bullet$

The **heavier** the ball, the more difficult it will be to throw it **far away**

Range of the interaction $\infty 1/mass$ of the vector

Creation and exchange of an interaction particle

 \Rightarrow violation of the energy conservation principle during a limited time

$$\Delta t \approx \frac{\hbar}{\Delta E} = \frac{\hbar}{mc^2}$$
 Heisenberg principle

• During Δt the particle can travel $R = c \Delta t$

$$R = \frac{\hbar c}{mc^2}$$
 Range \rightarrow « reduced » wave length (Compton)

with $\hbar c \simeq 197.3 \text{ MeV fm}$

Example : an interaction particle with $m = 200 \text{ MeV} \Leftrightarrow R = 1 \text{ fm}$

Force	Relative intensity (order of magnitude)	Vector	Lifetime (order of magnitude)
Strong	1	Gluons	10 ⁻²⁴ s
electromagnetic	10 ⁻²	Photon	10 ⁻¹⁹ - 10 ⁻²⁰ s
Weak	10 ⁻⁵	W and Z ⁰	10 ⁻¹⁶ - 10 ⁺³ s
Gravitation	10-40	Graviton	???

For the strong, electromagnetic and gravitational interactions these orders of magnitudes can be obtained comparing the binding energy of 2 protons separated by ~1fm

The intensity of the interactions dictates the particles lifetimes and their interaction cross sections.

Shape of the interaction potential

Electromagnetism (QED)

- Between charged particles
- Vector of the interaction : the photon (γ)
- One Feynman graph for QED:

Feynman graph

 A powerful « graphical » method to display the interaction in perturbations theory (each diagram is a term in the perturbation series)

Vector boson of the interaction

• Each graph is equivalent to « a number »

particle

 $\forall \rightarrow$ computation of the matrix elements and of the transition probabilities

Feynman rules : $e^{-(k')}$ $f^{(q)}$ $f^{(q)}$ $\mu^{-}(p')$ $\mu^{-}(p')$ Feynman rules :External lines: fields(spinors, vectors, ...) $Vertex: <math>\sqrt{\alpha}$ factor in the matrix element \ll interaction intensity » Propagator: factor $ig_{\nu\nu}/(q^2-m^2)$ (depends also on spin ...)

- Horizontal axis : the time
- Lines are particles which propagate in space-time
- The represent the vertices «location» of the interaction (where there is quantum number conservation)

The way we see the electron and the photon is modified

and experimental (g-2) consequences

e-

(g-2): Experimental evidence of the vacuum polarisation

Gyro-magnetic ratio g

• The magnetic moment associated associated to the angular momentum of the electron

Intrinsic magnetic momentum :

Dirac : for spin $\frac{1}{2}$ point-like particles : g=2

$$\vec{\mu} = g \mu_B \vec{S}$$
 spin
gyro-magnetic spin ratio

The value of g is modified by :

a=0.00115965241 ± 0.0000000020 experiment (10⁻¹¹ precision) a=0.00115965238 ±0.0000000026 theory (α^3)

Gravitational Force

To compare with the electromagnetic force for the hydrogen atom

The effects of gravitation are very small at the atom scale \rightarrow neglected..

• Important effects if $\alpha_{grav} \sim 1$

$$\frac{Gm^2}{\hbar c} \sim 1 \Longrightarrow mc^2 \sim 10^{19} GeV$$
 Masse de Planck

- For energies much lower than 10¹⁹ GeV we can neglect gravitational effects
- Actually there is not satisfactory theory for gravitation

More in details on cross section and width.

The total **cross section** σ for a collision is $a+b \rightarrow 1+2+...$ The **width for a decay** Γ is $a \rightarrow 1+2+...$ n

Both are described by Feymann diagrams

All traduce the probability that a pheomena occurs.

σ , Γ ~ Kinematics × Physics

а

Why « Kinematics »? Because the probability that a phenomena occurs depends on the number of kinematical configurations « opened » for the process. More configurations opened \rightarrow larger cross section and larger width (or smaller lifetime).

What we have in « **Physics** »? For instance we have couplings ! Stronger is the coupling \rightarrow larger cross section and larger width (or smaller lifetime).

3

Interactions : summary

- The interactions are mediated by vector bosons interaction range \propto 1/mass
- Feynman graph = display of a matrix element of the transition in the perturbations series framework
- Virtual particles (off-shell particles during a short time)
- <u>QED</u>: electric charge, γ , vacuum polarisation, $\alpha \nearrow$ with energy

Strong interaction (discussed in devoted lectures)

Weak interaction (discussed in devoted lectures)

- <u>QCD</u>: colour, gluons (self-interaction), $\alpha_s \searrow$ with energy (asymptotic freedom)
- <u>Weak:</u> concerns all fermions, W[±],Z⁰