

November 10-16, 2018 An-Najah N. University, Nablus, Palestine

Multi-messenger astronomy and cosmology

→ Lecture 1 Introduction to gravitational waves

→ Lecture 2 Detection of gravitational waves

→ Lecture 3 Multi-messenger astronomy

→ Lecture 4 Observational cosmology

Florent Robinet Laboratoire de l'Accélérateur Linéaire

robinet@lal.in2p3.fr

November 10-16, 2018 An-Najah N. University, Nablus, Palestine

Introduction to gravitational waves

- → General relativity
- → Gravitational waves
- \rightarrow First detections of gravitational waves
- → Characterization of black hole binary systems

Florent Robinet Laboratoire de l'Accélérateur Linéaire

robinet@lal.in2p3.fr

- ▶ 1915: The theory of general relativity is published by Albert Einstein
- Current description of gravitation
- Superior to Newtonian gravity
- ➤ Gravity = geometric description of space and time

Metric: space-time structure, used to define distances Space-time is described by the metric tensor $g_{\mu\nu}$

Distances are measured by integrating the distance element: $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$

Example: Minkowski flat metric (empty space, c=1)

$$g_{\mu\nu} = \eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$ds^{2} = -dx^{0} dx^{0} + dx^{1} dx^{1} + dx^{2} dx^{2} + dx^{3} dx^{3}$$
Euclidean metric
In presence of gravity, the metric is curved
$$\rightarrow \text{ distance = geodesics}$$

Einstein's equation:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R(+\Lambda g_{\mu\nu}) = \frac{8 \pi G}{c^4} T_{\mu\nu}$$

Space-time curvature Mass/energy

 $R_{\mu\nu} = R^{\alpha}_{\ \mu\alpha\nu}$ Ricci tensor = contraction of Riemann tensor

- $R = R^{\alpha}_{\alpha}$ Scalar curvature: Ricci tensor contraction
- $T_{\mu\nu}$ Energy-momentum tensor: density and flux of energy and momentum

The entire theory is encoded in a single expression!

- > Symmetrical tensors \rightarrow 10 equations
- Highly non-linear equations

Predictions of the theory

- Anomalous shift (43") of the Mercury perihelion
- Light deflection by gravity (observed in 1919)
- Gravitational redshift (observed in 1959)
- Gravitational lensing (observed in 1979)
- Black holes (observed indirectly)
- Gravitational waves (observed in 2015!)

Black holes

Region of space-time deformed by a compact mass from which nothing can escape (not even light). Introduced by Schwarzschild in 1916

Escape velocity (Newton):
$$v_e = \sqrt{2 \frac{Gm}{r}}$$
 $v_e = c$ $R_s = 2 \frac{Gm}{c^2}$ Schwarzschild radius
Black hole: $R < R_s = 2 \frac{Gm}{c^2}$

Earth	Sun	Neutron star	Black hole	
$R_s = 9 mm$	$R_s = 3 km$	$R_s \sim 5 \ km$	$R_s \sim 10 \ km$	Composity
R = 6000 km	R = 700000km	$R \sim 10 km$	$R < R_s$	Compacity

7

Black holes

Theoretical developments in the 60s:

- Rotating black hole solution (Kerr, 1963)
- Electrically charged black hole (Newman, 1965)
- No-hair theorem: mass+spin+charge (1967)
- Singularities as generic solutions (Hawking/Penrose, 1969)
- > Stellar black hole = result from the collapse of a massive star (m = 3-100 M_{sun})
- > Supermassive black hole = low-density object at the center of a galaxy (m $\sim 10^9$ M_{sun})
- > Primordial black hole = extremely dense object formed just after the big-bang.

Observational evidence:

- star motion near the Milky Way center

- accretion of matter on black holes = bright X-ray sources (X-ray binaries, quasars, AGN)

→ *indirect* observations

688 Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. EINSTEIN.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die g_{a} , in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_{4} = it$ aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter verster Näherung« ist dabei verstanden, daß die durch die Gleichung

$$g_{ar} = -\delta_{ar} + \gamma_{ar}$$

(1)

definierten Größen $\gamma_{\mu\nu}$, welche linearen orthogonalen Transformationen gegenüber Tensorcharakter besitzen, gegen 1 als kleine Größen behandelt werden können, deren Quadrate und Produkte gegen die ersten Potenzen vernachlässigt werden dürfen. Dabei ist $\delta_{\mu\nu} = 1$ bzw. $\delta_{\mu\nu} = 0$, je nachdem $\mu = \nu$ oder $\mu \neq \nu$.

Wir werden zeigen, daß diese y" in analoger Weise berechnet werden können wie die retardierten Potentiale der Elektrodynamik.

small perturbation of Minkowski's metric

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8 \pi G}{c^4} T_{\mu\nu} = 0$$

Add a small perturbation to a flat metric: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad |h_{\mu\nu}| \ll 1$

Einstein equations can be linearized and solved: *h* obeys a plane-wave equation (transverse-traceless gauge)
the wave propagates at the speed of light
2 degrees of freedom: *h*₊ and *h*_x

→ Gravitational waves

Gravitational-wave emission

Quadrupole (traceless) $Q_{ii} = \int \rho(x_i x_i) d^3 \vec{r}$

Einstein quadrupole formula (radiated power)

 \sim

$$\frac{dE}{dt} = -\frac{G}{5c^5} \left\langle \frac{d^3Q^{ij}}{dt^3} \frac{d^3Q_{ij}}{dt^3} \right\rangle$$

Estimate using the source parameters $Q \sim \varepsilon M R^2$

$$\frac{d^3Q}{dt^3} \sim \varepsilon M R^2 \omega^3$$

$$\frac{dE}{dt} \sim -\frac{G}{c^5} \varepsilon^2 M^2 R^4 \omega^6 \sim -\frac{c^5}{G} \varepsilon^2 \left(\frac{R_s}{R}\right)^2 \left(\frac{v}{c}\right)^6$$
$$\simeq 10^{52} W$$

- \rightarrow Important source characteristics:
- asymmetric
- compact
- relativistic

Gravitational-wave sources

Gravitational-wave emission

z projection in transverse-traceless gauge:

$$\ddot{Q} = \begin{pmatrix} -4 ma^2 \omega^2 \cos(2\omega t) & -4 ma^2 \omega^2 \sin(2\omega t) \\ -4 ma^2 \omega^2 \sin(2\omega t) & 4 ma^2 \cos(2\omega t) \end{pmatrix} \Rightarrow h_{ij}^{TT} = 2 \frac{G}{rc^4} \ddot{Q}_{ij}$$
$$\Rightarrow h_+ = -2 \frac{G}{rc^4} 4 \omega^2 ma^2 \cos(2\omega t)$$

Source at 100 Mpc, rotating at 50 Hz, m=2 $\rm M_{sun}$ orbiting at 1000 km: $h\!\sim\!4\!\times\!10^{-21}$

Theoretical waveforms

Theoretical input:

- 90s: CBC PN waveforms (Blanchet, Iyer, Damour, Deruelle, Will, Wiseman, ...)
- 00s: CBC Effective One Body "EOB" (Damour, Buonanno)
- 06: BBH numerical simulation (Pretorius, Baker, Loustos, Campanelli)

Theoretical waveforms

Theoretical input:

- 90s: CBC PN waveforms (Blanchet, Iyer, Damour, Deruelle, Will, Wiseman, ...)
- 00s: CBC Effective One Body "EOB" (Damour, Buonanno)
- 06: BBH numerical simulation (Pretorius, Baker, Loustos, Campanelli)

→ Input for GW searches
→ Input for parameter estimation analyses

LIGO Livingston, USA

Compact Binary Coalescence = CBC

Compact Binary Coalescence = CBC

L1-DCS_CALIB_STRAIN_C02_OMICRON

1186741860.8 1186741861 1186741861.3 1186741861.5 118674186¹.8

167559935.8 1167559936 1167559936.3 1167559936.5 1167559936.8 30922492.6 1180922493.1 1180922493.6 1180922494.1 1180922494.6 Time [s] V1-Hrec hoft V1O2Repro2A 16384Hz OMICRON: Q=8.253 36741860.8 1186741861 1186741861.3 1186741861.5 1186741861.5 1186741860.8 1186741861 1186741861 3 1186741861.5 1186741861.8

GW150914

GW151226

GW170104

GW170608

GW170814

8 intrinsic parameters: masses and spins

9 extrinsic parameters: distance, position (x2), orientation (x2), orbital ellipticity (x2), coalescence time and phase)

Inspiral phase: PN perturbative expansion (v/c)

Leading order \rightarrow phase evolution driven by the chirp mass (tight constraints)

- Next order \rightarrow m2/m1 and spins // L
- Next orders \rightarrow full spins

Late inspiral – merger – ringdown: numerical relativity waveforms Late inspiral \rightarrow total mass (+chirp mass + m1/m2) \rightarrow individual masses Ringdown \rightarrow final BH mass and spin

Amplitude: inversely proportional to the distance

Amplitude and phase difference between sites \rightarrow sky location + Amplitude and phase consistency

Mostly sensitive to the chirp mass $\rightarrow m_1, m_2$ degeneracy

$$M_{c} = \frac{(m_{1}m_{2})^{3/5}}{(m_{1}+m_{2})^{1/5}}$$

GW150914	GW151226
$m_1 = 36.2^{+5.2}_{-3.2} M_{sun}$	$m_1 = 14.2^{+8.3}_{-3.7} M_{sun}$
$m_2 = 29.1^{+3.7}_{-4.4} M_{sun}$	$m_2 = 7.5^{+2.3}_{-2.3} M_{sun}$

→ All the components are black holes → Very high masses for GW150914

 \rightarrow not well constrained

GW151226: at least one black hole is a Kerr black hole spin >0.2

GW150914

BBH formation

Dynamical interactions in clusters

How can we discriminate these 2 scenarios?

 \rightarrow spins!

Isolated binary:

Spins preferentially aligned with the binary orbital angular momentum

Cluster binary: Isotropic spin orientations

Final mass & spin

GW150914 $M_f = 62.3^{+3.7}_{-3.1} M_{sun}$ $a_f = 0.68^{+0.05}_{-0.06}$

GW151226 $M_f = 20.8^{+6.1}_{-1.7} M_{sun}$ $a_f = 0.74^{+0.06}_{-0.06}$

90% credible region for sky location: \rightarrow GW150914 = 230 deg² \rightarrow GW151226 = 850 deg²

GW170814

	Total mass (M _{sun})	q=m2/m1 (M _{sun} /M _{sun})	radiated energy (M _{sun})	effective inspiral spin	redshift	SNR
GW150914	$65.3^{+4.1}_{-3.4}$	$\frac{29.1^{+3.7}_{-4.4}}{36.2^{+5.2}_{-3.8}}$	$3.0^{+0.5}_{-0.4}$	$-0.06^{+0.14}_{-0.14}$	$0.09^{+0.03}_{-0.04}$	23.7
GW170814	$55.9^{+3.4}_{-2.7}$	$\frac{25.3^{+2.8}_{-4.2}}{30.5^{+5.7}_{-3.0}}$	$2.7^{+0.4}_{-0.3}$	$0.06^{\rm +0.12}_{\rm -0.12}$	$0.11^{+0.03}_{-0.04}$	15.0
GW170104	$50.7^{+5.9}_{-5.0}$	$\frac{19.4^{+5.3}_{-5.9}}{31.2^{+8.4}_{-6.0}}$	$2.0^{+0.6}_{-0.7}$	$-0.12^{+0.21}_{-0.30}$	$0.176^{+0.078}_{-0.074}$	13.3
GW151226	$21.8^{+5.9}_{-1.7}$	$\frac{7.5^{+2.3}_{-2.3}}{14.2^{+8.3}_{-3.7}}$	$1.0^{+0.1}_{-0.2}$	$0.21^{+0.20}_{-0.10}$	$0.09^{+0.03}_{-0.04}$	13.0
GW170608	19^{+5}_{-1}	$\frac{7^{+2}_{-2}}{12^{+7}_{-2}}$	$0.85^{+0.07}_{-0.17}$	$0.07^{+0.23}_{-0.09}$	$0.07^{+0.03}_{-0.03}$	13.0

Testing General Relativity

Modified dispersion relation (ex: LIV theories): $E^2 = p^2 c^2 + A^{\alpha} c^{\alpha}$

massive graviton: $\alpha = 0$ multifractal theories: $\alpha = 2.5$ doubly special relativity: $\alpha = 3$ extra-dimensions: $\alpha = 4$ \rightarrow modified propagation velocity: $\frac{v_g}{c} = 1 + (\alpha - 1) \frac{AE^{\alpha - 2}}{2}$

	Total mass (M _{sun})	q=m2/m1 (M _{sun} /M _{sun})	radiated energy (M _{sun})	effective inspiral spin	redshift	SNR
GW150914	$65.3^{+4.1}_{-3.4}$	$\frac{29.1^{+3.7}_{-4.4}}{36.2^{+5.2}_{-3.8}}$	$3.0^{+0.5}_{-0.4}$	$-0.06^{+0.14}_{-0.14}$	$0.09^{+0.03}_{-0.04}$	23.7
GW170814	$55.9^{+3.4}_{-2.7}$	$\frac{25.3^{+2.8}_{-4.2}}{30.5^{+5.7}_{-3.0}}$	$2.7^{+0.4}_{-0.3}$	$0.06^{+0.12}_{-0.12}$	$0.11^{+0.03}_{-0.04}$	15.0
GW170104	$50.7^{+5.9}_{-5.0}$	$\frac{19.4^{+5.3}_{-5.9}}{31.2^{+8.4}_{-6.0}}$	$2.0^{+0.6}_{-0.7}$	$-0.12^{+0.21}_{-0.30}$	$0.176^{+0.078}_{-0.074}$	13.3
GW151226	$21.8^{+5.9}_{-1.7}$	$\frac{7.5^{+2.3}_{-2.3}}{14.2^{+8.3}_{-3.7}}$	$1.0^{+0.1}_{-0.2}$	$0.21^{+0.20}_{-0.10}$	$0.09^{+0.03}_{-0.04}$	13.0
GW170608	19^{+5}_{-1}	$\frac{7^{+2}_{-2}}{12^{+7}_{-2}}$	$0.85^{+0.07}_{-0.17}$	$0.07^{+0.23}_{-0.09}$	$0.07^{+0.03}_{-0.03}$	13.0

Testing General Relativity

 $\rightarrow\,$ extra term in the evolution of the gravitational-wave phase

 \rightarrow Upper limits on A

 α =0 A>0 : limit on the graviton mass: $m_g < 7.7 \times 10^{-23} eV/c^2$

Conclusions

- \rightarrow 2015: first detection of gravitational waves produced by a binary system of black holes
- \rightarrow 2015-2017: additional detections (5 up to now) \rightarrow initiate population studies
- \rightarrow New class of stellar black holes (m > 15 M_{sun})
- \rightarrow Parameter estimation

